Modulation of $\mathbf{Z n}-\mathrm{C}$ Bond Lengths Induced by Ligand Architecture in Zinc Carbatrane Compounds

Serge Ruccolo, Wesley Sattler, Yi Rong, and Gerard Parkin*
Department of Chemistry, Columbia University, New York, New York 10027, United States

S Supporting Information

Abstract

Bond lengths between pairs of atoms in covalent molecules are generally predicted well by the sum of their respective covalent radii, such that there are usually only small variations in related compounds. It is, therefore, significant that we have demonstrated that the incorporation of appropriately sized linkers between carbon and a metal center provides a means to modulate the length and nature of a metal-carbon interaction. Specifically, X-ray diffraction studies on a series of tris(1-methylimidazol-2ylthio)methyl zinc complexes, [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$, demonstrate how the $\mathrm{Zn}-\mathrm{C}$ bond lengths are highly variable (2.17$2.68 \AA$) and are up to $0.67 \AA$ longer than the average value listed in the Cambridge Structural Database ($2.01 \AA$). Furthermore, density functional theory calculations on $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ demonstrate that the interaction is very flexible, such that either increasing or decreasing the $\mathrm{Zn}-\mathrm{C}$ length from that in the equilibrium structure is associated with little energy change in comparison to that for other compounds with $\mathrm{Zn}-\mathrm{C}$ bonds.

Despite the fact that the concept of the chemical bond continues to evolve as new characterization techniques and calculations provide additional ways to probe its nature, ${ }^{1}$ the ability to assign covalent radii to elements is a consequence of the fact that the bond lengths between a given pair of atoms in covalent molecules are reasonably constant. For example, analysis of the structurally characterized compounds in the Cambridge Structural Database (CSD) ${ }^{2}$ indicates that the mean $\mathrm{Zn}-\mathrm{C}$ single bond length is $2.01 \AA$, with a standard deviation of only $0.07 \AA$. Here we describe how the $\mathrm{Zn}-\mathrm{C}$ bond length can be manipulated in a significant manner by modifying the ligand architecture.

Tridentate tripodal ligands that feature three nitrogen donors, as exemplified by the tris(pyrazolyl)hydroborato class of ligands, ${ }^{3}$ are a common feature in coordination chemistry. Closely related are C_{3}-symmetric tetradentate tripodal variants in which the bridgehead donor also binds to the metal, thereby generating an atrane motif. ${ }^{4,5}$ The majority of such ligands, however, feature a bridgehead comprised of an L-type ${ }^{6}$ nitrogen atom donor, as illustrated by tris(amidoethyl)amine and related derivatives. ${ }^{4,5,7}$ By comparison, atranes that feature a transannular M-C interaction have received little attention. Recently, however, the tris(2-pyridylthio)methyl ligand, [Tptm], has been shown to be able to form metallacarbatranes (Figure 1) with a variety of different metals. ${ }^{7-9}$ Furthermore, we have also demonstrated that [Tptm] is a useful ligand for Zn that allows

Figure 1. Tris(2-pyridylthio)methyl (left) and tris(1-methylimidazol-2ylthio)methyl (right) ligands.
for the isolation of a monomeric alkyl zinc hydride compound, which is an effective catalyst for transformations such as hydrosilylation of aldehydes, ketones, and carbon dioxide. ${ }^{10,11}$ Prompted by these studies, we have extended our investigations to the application of a closely related multidentate alkyl ligand, namely tris(1 -methylimidazol-2-ylthio)methyl, [$\mathrm{Titm}^{\mathrm{Me}}$], which differs from $[\mathrm{Tptm}]$ by virtue of the presence of a 5 -membered imidazolyl moiety, rather than a 6 -membered pyridyl group (Figure 1). Albeit a relatively small perturbation in the nature of the heterocyclic donor, the modification has a profound structural impact, as described herein.

Coordination of the tris(1-methylimidazol-2-ylthio)methyl ligand to Zn may be achieved by several approaches, two of which include the reactions of either $\mathrm{Me}_{2} \mathrm{Zn}$ or $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ with tris(1-methylimidazol-2-ylthio)methane, $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{H},{ }^{12}$ to afford $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ and $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}$, respectively (Scheme 1). X-ray diffraction studies demonstrate that the

Scheme 1. Synthesis of $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$

[$\left.\mathrm{Titm}^{\mathrm{Me}}\right]$ ligands of $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ and $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right]$ $\mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}$ coordinate in a hypodentate ${ }^{13} \kappa^{3}$-manner, as illustrated for $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ in Figure 2. The compounds are, nevertheless, fluxional in solution, analogous to the $\left[\kappa^{3}-\mathrm{Tptm}\right] \mathrm{ZnMe}$ and $\left[\kappa^{3}-\mathrm{Tptm}\right] \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}$ counterparts.
$\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ and $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}$ are useful precursors for a variety of other [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ derivatives, as illustrated in Scheme 2. For example, the $\mathrm{Zn}-\mathrm{Me}$ bond of $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ is readily cleaved protolytically by $\mathrm{H}-\mathrm{X}(\mathrm{X}=$

Received: September 2, 2016
Published: October 25, 2016

Figure 2. Molecular structures of $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ (left) and [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ (right).

Scheme 2. Synthesis of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ Complexes

$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NCO}$
$\mathrm{Br}, \mathrm{OSiMe}_{3}, \mathrm{OAr}, \mathrm{SPh}, \mathrm{SePh}, \mathrm{OC}(\mathrm{O}) \mathrm{Ph}$) to afford $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$. Likewise, the trimethylsiloxide compound, $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnOSiMe}_{3}$, can be employed to form the halide and isocyanate complexes, $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NCO})$, by treatment with $\mathrm{Me}_{3} \mathrm{SiX}$. Furthermore, $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}$ reacts with CO_{2} to form the isocyanate complex, [$\mathrm{Titm}^{\mathrm{Me}}$]ZnNCO , thereby resulting in the deoxygenation of CO_{2}.

The molecular structures of a variety of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ complexes have been determined by X-ray diffraction (Table 1), thereby demonstrating that the $\left[\mathrm{Titm}^{\mathrm{Me}}\right]$ ligand coordinates in a κ^{4}-manner, such that the compounds have an approximately trigonal bipyramidal geometry, as illustrated for [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ in Figure 2. ${ }^{14}$ These compounds, therefore, possess an atrane motif that is quite distinct from the aforementioned κ^{3}-structures observed for $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ and $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}$.

Although the hypodentate and atrane structural classes are also observed for the $[\mathrm{Tptm}] \mathrm{ZnX}$ system, ${ }^{8}$ a particularly important distinction pertains to the nature of the $\mathrm{Zn}-\mathrm{C}$ interactions in the atrane complexes. Specifically, whereas the $\mathrm{Zn}-\mathrm{C}$ bond lengths of the various $[\mathrm{Tptm}] \mathrm{ZnX}$ atrane complexes span a relatively narrow range of $2.11-2.22 \AA$, the corresponding interactions for $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ are considerably longer and range from 2.44 to $2.68 \AA$ (Table 1). ${ }^{15}$ These distances are $0.43-0.67 \AA$ longer than the mean $\mathrm{Zn}-\mathrm{C}$ bond length of $2.01 \AA$ for compounds listed in the CSD. ${ }^{2,16}$ Albeit longer than the sum of covalent radii, the $\mathrm{Zn} \cdots \mathrm{C}$ distances are, nevertheless, distinctly shorter than the sum of the crystallographic van der Waals radii $(3.8 \AA)^{17}$ such that they correspond to a bonding interaction.

In contrast to the variable and long $\mathrm{Zn}-\mathrm{C}$ interactions for the $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ atrane derivatives, however, the corresponding $\mathrm{Zn}-\mathrm{C}$ bond distance for the κ^{3}-complex, $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$

Table 1. Comparison of $\mathrm{Zn}-\mathrm{C}$ and $\mathrm{Zn}-\mathrm{N}$ Bond Lengths (\AA) for $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathbf{Z n X}$

X	$d(\mathrm{Zn}-\mathrm{C})$	$d(\mathrm{Zn}-\mathrm{N})_{\text {av }}$	$d(\mathrm{Zn}-\mathrm{X})$	$\tau_{5}($ ref 14$)$
$\mathrm{CH}_{3}\left(\kappa^{3}\right)$	$2.166(2)$	2.058	$1.961(2)$	-
Cl	$2.479(3)$	2.008	$2.346(1)$	0.97
	$2.509(3)$	2.008	$2.348(1)$	0.92
Br	$2.580(2)$	1.998	$2.514(1)$	0.93
I	$2.476(6)$	1.998	$2.793(1)$	0.91
NCO	$2.477(5)$	2.021	$2.029(7)$	0.87
	$2.575(5)$	2.013	$2.065(5)$	0.95
OSiMe_{3}	$2.684(3)$	2.012	$1.911(1)$	0.92
$\mathrm{OPh}^{2}-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Br}$	$2.646(2)$	2.009	$1.967(2)$	0.88
$p-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Me}$	$2.607(4)$	2.002	$1.967(3)$	0.89
$p-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	$2.633(2)$	2.005	$1.972(2)$	0.89
	$2.448(5)$	2.012	$2.014(3)$	0.83
$p-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}$	$2.478(5)$	2.010	$2.028(3)$	0.81
$p-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Me}-$	$2.599(2)$	2.010	$1.990(2)$	0.86
$\left(p-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$	$2.436(2)$	2.027	$2.042(2)$	0.76
$\mathrm{OC}(\mathrm{O}) \mathrm{Ph}^{2}$	$2.513(4)$	2.017	$2.034(3)$	0.80
SPh	$2.564(2)$	2.020	$2.389(1)$	0.95
SePh	$2.555(3)$	2.019	$2.514(1)$	0.98

$[2.166(2) \AA],{ }^{18}$ is in the range observed for the [Tptm] ZnX atrane compounds. Also contrasting with the unusually long $\mathrm{Zn}-\mathrm{C}$ bond lengths of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$, the corresponding $\mathrm{Zn}-\mathrm{N}$ bond lengths [1.998(2)-2.027(2) \AA] do not vary significantly $(0.029 \AA)$ and are similar to those for $[\mathrm{Tptm}] \mathrm{ZnX}(2.04-$ $2.16 \AA$). As such, the similarity of the $\mathrm{Zn}-\mathrm{N}$ bond lengths further emphasizes the novelty associated with the unusually long and variable $\mathrm{Zn}-\mathrm{C}$ bond lengths within [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$.

In this regard, an interesting illustration of the variability of the $\mathrm{Zn}-\mathrm{C}$ bond lengths is provided by the observation that hydrogen bonding of $\mathrm{ArOH}(\mathrm{Ar}=p-\mathrm{Tol})$ to the aryloxide ligand of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnOAr}$ results in a lengthening of the $\mathrm{Zn}-\mathrm{O}$ bond by $0.070 \AA$, but a much more significant contraction of the $\mathrm{Zn}-\mathrm{C}$ bond by $0.197 \AA$.

While bond distances longer than the sum of the covalent radii are sometimes observed between the bridgehead atoms in atrane complexes ${ }^{15}$ the interactions typically involve dative bonds that are well-known to be highly variable and sensitive to the coordination environment. ${ }^{99,20}$ Bond length changes have also been observed upon oxidation of molecules, ${ }^{9 \mathrm{e}, f, 21}$ but it is very unusual to observe significant variations for normal covalent bonds in molecules with the same oxidation state, as exemplified by the fact that the standard deviation for the mean $\mathrm{Zn}-\mathrm{C}$ bond length of $2.01 \AA$ for compounds listed in the CSD is only $0.07 \AA \AA^{2,22}$ It is, therefore, evident that the unusually long $\mathrm{Zn}-\mathrm{C}$ interactions in $\left[\kappa^{4}-\mathrm{Titm}^{\mathrm{Me} e}\right] \mathrm{ZnX}$ cannot be described as conventional covalent bonds. The interactions are, therefore, proposed to possess a significant ionic component such that the compounds are best described as zwitterionic, with carbon and zinc centers that are formally anionic and cationic, respectively.

Zwitterionic metal compounds that feature anionic carbon centers are uncommon and are typically encountered in situations where geometric factors prevent the carbon lone pair from interacting with the metal. ${ }^{7}$ For example, the two-atom linkers between carbon and zinc in the zwitterionic tris(3,5dimethylpyrazolyl $)$ methyl zinc compounds, $\left[\mathrm{C}\left(\mathrm{pz}^{\mathrm{Me}_{2}}\right)_{3}\right] \mathrm{ZnX}[\mathrm{X}$ $\left.=\mathrm{Me}, \mathrm{Cl}, \mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$, ${ }^{23}$ prohibit direct $\mathrm{Zn}-\mathrm{C}$ interactions because the lone pairs point directly away from the metal center (Figure 3). ${ }^{24-26}$

Figure 3. The two-atom linkers between carbon and zinc in $\left[\mathrm{C}\left(\mathrm{pz}^{\mathrm{Me}_{2}}\right)_{3}\right] \mathrm{ZnX}$ (left) direct the lone pair away from the metal atom, whereas the more flexible three-atom linkers in $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ allow the lone pair to point towards the metal atom.

This is in marked contrast to the [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ complexes described here, in which the lone pair on the formally anionic bridgehead carbon atom is oriented directly towards the Zn center, yet does not participate in a conventional covalent bond.

One of the reasons for the differences between the [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ and [Tptm$] \mathrm{ZnX}$ structures is undoubtedly associated with the different bond angles of the 5 -membered imidazole and 6 -membered pyridine rings. As a result, for a $C_{3 v}$ geometry, the donor orbitals of the nitrogen atoms of the $\left[\kappa^{4}-\mathrm{Titm}^{\mathrm{Me}}\right]$ ligand are directed further from the $\left[\mathrm{N}_{3}\right]$ plane than are those for the $\left[\kappa^{4}-\mathrm{Tptm}\right]$ ligand system (Figure 4). ${ }^{27}$ Thus, the zinc atoms of $\left[\kappa^{4}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ are displaced by $0.27-0.41 \AA$ from the respective $\left[\mathrm{N}_{3}\right]$ plane, whereas the zinc atoms of [$\left.\kappa^{4}-\mathrm{Tptm}\right] \mathrm{ZnX}$ are displaced by only $0.05-0.16 \AA$.

Figure 4. The different angles associated with the 5- and 6-membered rings result in the nitrogen lone pair orbitals being more displaced from the $\left[\mathrm{N}_{3}\right]$ plane for the $\left[\mathrm{Titm}^{\mathrm{Me}}\right]$ system, thereby favoring a longer $\mathrm{M}-\mathrm{C}$ bond.

A natural consequence of the out-of-plane directionality of the nitrogen atom donor orbitals of [$\mathrm{Titm}^{\mathrm{Me}}$] is to lengthen the $\mathrm{Zn}-\mathrm{C}$ distance. The most stable geometry of $\left[\kappa^{4}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ is, therefore, a compromise that maximizes the sum of the $\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{C}$ bond energies. Specifically, displacement of the Zn center from the $\left[\mathrm{N}_{3}\right]$ plane maximizes the $\mathrm{Zn}-\mathrm{N}$ interactions at the expense of the $\mathrm{Zn}-\mathrm{C}$ interaction. The observation that the $\mathrm{Zn}-\mathrm{C}$ distances vary more significantly than the $\mathrm{Zn}-\mathrm{N}$ distances indicates that the $\mathrm{Zn} \leftarrow \mathrm{N}$ bonds play a more dominant role in determining the structure than does the $\mathrm{Zn}-\mathrm{C}$ bond. Since the $\mathrm{Zn} \leftarrow \mathrm{N}$ bonds represent dative interactions, which are often flexible, ${ }^{19}$ the preferential variability of the $\mathrm{Zn}-\mathrm{C}$ bond lengths is most likely a consequence of the fact that the axial $\mathrm{Zn}-\mathrm{C}$ bond of a pseudo-trigonal bipyramidal structure is a component of a 3 -center-4-electron (3c-4e) "hypervalent" ω interaction, ${ }^{28}$ rather than a conventional $2 \mathrm{c}-2 \mathrm{e}$ bond. Such axial bonds are often longer ${ }^{28-30}$ and, as a consequence, play a less significant role in determining the overall structure.

The two occupied molecular orbitals pertaining to the $3 \mathrm{c}-4 \mathrm{e}$ interactions for both $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ and $[\mathrm{Tptm}] \mathrm{ZnCl}$ are illustrated in Figure 5. Of these, the lower energy orbital for each molecule possesses largely chlorine character, while the higher energy orbital possesses largely carbon character. With respect to the latter orbital, the principal difference between $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ and $[\mathrm{Tptm}] \mathrm{ZnCl}$ is that the former possesses a

$-8.12 \mathrm{eV}$
[Titm ${ }^{\text {Me }}$] ZnCl

$-8.74 \mathrm{eV}$
[Tptm]ZnCl

Figure 5. Occupied orbitals of the $3 \mathrm{c}-4 \mathrm{e}$ interactions of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ and $[\mathrm{Tptm}] \mathrm{ZnCl}$. The HOMO of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ is effectively a carbonbased sp^{n} hybrid lone pair orbital.
much greater degree of carbon character, such that the HOMO is effectively an sp^{n} hybrid lone pair orbital on carbon. Alternatively, rather than invoking a molecular orbital description, the axial hypervalent interaction can be described in terms of resonance involving the zwitterionic structures, $\left[\mathrm{C}^{-} \mathrm{Zn}^{+}-\mathrm{Cl}\right]$ and $\left[\mathrm{C}-\mathrm{Zn}^{+} \mathrm{Cl}^{-}\right]$. Of these, the resonance structure with the formal negative charge on C , i.e., $\left[\mathrm{C}^{-} \mathrm{Zn}^{+}-\mathrm{Cl}\right]$, is considered to be the dominant contributor for $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}^{31}$

While the displacement of Zn from the $\left[\mathrm{N}_{3}\right]$ plane maximizes the $\mathrm{Zn}-\mathrm{N}$ interactions for a $\mathrm{C}_{3 v}$ geometry of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$, the large variability in the $\mathrm{Zn}-\mathrm{C}$ distances suggests that the out-ofplane preference is not strong. Supporting this statement, density functional theory (DFT) calculations demonstrate that the energy surface associated with varying the $\mathrm{Zn}-\mathrm{C}$ bond length is rather shallow. Specifically, a series of geometry optimization calculations, in which the $\mathrm{Zn}-\mathrm{C}$ distance of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ is varied, demonstrates that the energy of the molecule changes relatively little as the $\mathrm{Zn}-\mathrm{C}$ distance is modified (Figure 6). ${ }^{32}$ For example, increasing the $\mathrm{Zn}-\mathrm{C}$ bond by $0.2 \AA$ from the value in the fully geometry optimized structure results in an increase in energy of only $0.38 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 6). Likewise, shortening the $\mathrm{Zn}-\mathrm{C}$ bond by $0.2 \AA$ increases the energy of the molecule by only $0.41 \mathrm{kcal} \mathrm{mol}^{-1}$.

Similar DFT calculations have been performed on [Tptm] ZnCl . Significantly, in addition to the equilibrium $\mathrm{Zn}-\mathrm{C}$ bond being shorter than that for $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$, the energy surface is much steeper (Figure 6). Thus, lengthening the

Figure 6. Relative energies of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl},[\mathrm{Tptm}] \mathrm{ZnCl}$, and MeZnCl as a function of $\mathrm{Zn}-\mathrm{C}$ distance.
$\mathrm{Zn}-\mathrm{C}$ bond by $0.2 \AA$ increases the energy of the molecule by 1.51 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$, as compared to a value of $0.38 \mathrm{kcal} \mathrm{mol}^{-1}$ for the corresponding change in $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$.

It is also pertinent to compare the flexibility of the $\mathrm{Zn}-\mathrm{C}$ bonds of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ and $[\mathrm{Tptm}] \mathrm{ZnCl}$ with that of MeZnCl , which is devoid of additional donor groups. Thus, as would be expected, the $\mathrm{Zn}-\mathrm{C}$ bond of $\mathrm{MeZnCl}(2.01 \AA)$ is significantly shorter than those of $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ and $[\mathrm{Tptm}] \mathrm{ZnCl}$ and the energy of the molecule is much more sensitive to perturbations in bond length (Figure 6). For example, lengthening of the $\mathrm{Zn}-\mathrm{C}$ bond of MeZnCl by $0.2 \AA$ increases the energy substantially by $3.82 \mathrm{kcal} \mathrm{mol}^{-1}$, thereby reiterating the significance of the long and variable $\mathrm{Zn}-\mathrm{C}$ bond lengths in [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnCl}$ (Figure 6).

In summary, we have demonstrated that the incorporation of donor substituents, with appropriately sized spacers, can be used to modulate the length and nature of a metal-carbon bond. Specifically, a linker that comprises a 5 -membered imidazolyl ring has the ability to create zwitterionic $\mathrm{Zn}^{+} \ldots \mathrm{C}^{-}$interactions in $\left[\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ compounds that are up to $0.67 \AA$ longer than the average value listed in the CSD. DFT calculations also demonstrate that, in comparison to other compounds with $\mathrm{Zn}-\mathrm{C}$ bonds, the interactions in [$\left.\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnX}$ are highly flexible and that little energy is required to increase or decrease the length from that in the equilibrium structure.

- ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b09250.

Experimental details and computational data (PDF)
Crystallographic data in CIF format (ZIP)

AUTHOR INFORMATION

Corresponding Author

*parkin@columbia.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Science Foundation (CHE-1465095 and CHE-1058987) for support of this research.

- REFERENCES

(1) (a) Ball, P. Nature 2011, 469, 26. (b) Alvarez, S.; Hoffmann, R.; Mealli, C. Chem.-Eur. J. 2009, 15, 8358.
(2) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. Acta Crystallogr. 2016, B72, 171.
(3) (a) Trofimenko, S. Scorpionates-The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press: London, 1999. (b) Pettinari, C. Scorpionates II: Chelating Borate Ligands; Imperial College Press: London, 2008.
(4) Verkade, J. G. Coord. Chem. Rev. 1994, 137, 233.
(5) (a) Blackman, A. G. Polyhedron 2005, 24, 1. (b) Blackman, A. G. Eur. J. Inorg. Chem. 2008, 2008, 2633.
(6) Green, M. L. H.; Parkin, G. J. Chem. Educ. 2014, 91, 807.
(7) Kuzu, I.; Krummenacher, I.; Meyer, J.; Armbruster, F.; Breher, F. Dalton Trans. 2008, 5836.
(8) For recent examples, see: Sattler, W.; Ruccolo, S.; Parkin, G. J. Am. Chem. Soc. 2013, 135, 18714 and references therein.
(9) For other examples of metallacarbatranes, see: (a) Rong, Y.; Parkin, G. Aust. J. Chem. 2013, 66, 1306. (b) Al-Harbi, A.; Rong, Y.; Parkin, G. Dalton Trans. 2013, 42, 14053. (c) Allen, O. R.; Field, L. D.; Magill, A. M.; Vuong, K. Q.; Bhadbhade, M. M.; Dalgarno, S. J. Organometallics 2011, 30, 6433. (d) Ciclosi, M.; Lloret, J.; Estevan, F.; Lahuerta, P.;

Sanaú, M.; Pérez-Prieto. Angew. Chem., Int. Ed. 2006, 45, 6741.
(e) Rittle, J.; Peters, J. C. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15898.
(f) Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
(10) (a) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2012, 134, 17462. (b) Sattler, W.; Ruccolo, S.; Chaijan, M. R.; Allah, T. N.; Parkin, G. Organometallics 2015, 34, 4717.
(11) Sattler, W.; Parkin, G. Catal. Sci. Technol. 2014, 4, 1578.
(12) Gwengo, C.; Silva, R. M.; Smith, M. D.; Lindeman, S. V.; Gardinier, J. R. Inorg. Chim. Acta 2009, 362, 4127.
(13) (a) Constable, E. C. Prog. Inorg. Chem. 1994, 42, 67. (b) Blackman, A. G. C. R. Chim. 2005, 8, 107.
(14) The compounds described here have five-coordinate τ_{5} parameters in the range $0.80-0.93$. For comparison, an idealized trigonal bipyramidal structure is characterized by a τ_{5} value of 1.00 , while that for a square pyramidal geometry is 0.00 . See: Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349.
(15) To the extent that the $\mathrm{Zn}-\mathrm{C}$ bond lengths are longer than the sum of the covalent radii, the compounds are better described as quasiatranes. See ref 4.
(16) Furthermore, the sum of the covalent radii of Zn and $\mathrm{sp}^{3} \mathrm{C}$ has been reported as $1.98 \AA$ (ref 16a) and $1.91 \AA$ (ref 16b): (a) Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Dalton Trans. 2008, 2832. (b) Pyykkö, P.J. Phys. Chem. A 2015, 119, 2326.
(17) Batsanov, S. S. Inorg. Mater. 2001, 37, 871.
(18) The $\mathrm{Zn}-\mathrm{CH}_{3}$ bond length of $\left[\kappa^{3}-\mathrm{Titm}^{\mathrm{Me}}\right] \mathrm{ZnMe}$ is 1.961 (2) \AA.
(19) Haaland, A. Angew. Chem., Int. Ed. Engl. 1989, $28,992$.
(20) See, for example: Moret, M.-E.; Peters, J. C. Angew. Chem., Int. Ed. 2011, 50, 2063.
(21) Moret, M.-E.; Zhang, L. M.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 3792.
(22) It is also worth noting that increasing the substitution on the carbon atom has very little influence on lengthening a $\mathrm{Zn}-\mathrm{C}$ bond in $\mathrm{R}_{2} \mathrm{Zn}$ compounds. Thus, the $\mathrm{Zn}-\mathrm{C}$ bond of $\mathrm{ZnBu}^{\mathrm{t}}$ is only $0.044 \AA$ longer than that for $\mathrm{Me}_{2} \mathrm{Zn}$. See: Haaland, A.; Green, J. C.; McGrady, S.; Downs, A. J.; Gullo, E.; Lyall, M. J.; Timberlake, J.; Tutukin, A. V.; Volden, H. V.; Østby, K.-A. Dalton Trans. 2003, 4356.
(23) (a) Bigmore, H. R.; Meyer, J.; Krummenacher, I.; Rüegger, H.; Clot, E.; Mountford, P.; Breher, F. Chem.-Eur. J. 2008, 14, 5918. (b) Cushion, M. G.; Meyer, J.; Heath, A.; Schwarz, A. D.; Fernández, I.; Breher, F.; Mountford, P. Organometallics 2010, 29, 1174.
(24) For compounds with zwitterionic character in which the lone pair is directed towards the metal, see refs $9 \mathrm{~b}, 9 \mathrm{e}$, and 9 f .
(25) For other examples of zwitterionic Zn compounds with anionic carbon centers, see: (a) Mou, Z.; Liu, B.; Wang, M.; Xie, H.; Li, P.; Li, L.; Li, S.; Cui, D. Chem. Commun. 2014, 50, 11411. (b) Mou, Z. H.; Xie, H. Y.; Wang, M. Y.; Liu, N.; Yao, C. G.; Li, L.; Liu, J. Y.; Li, S. H.; Cui, D. M. Organometallics 2015, 34, 3944.
(26) For other metal compounds with formally anionic carbon centers, see ref 7 .
(27) On geometric grounds alone, replacing a 6 -membered ring with a 5 -membered ring shifts the direction of the nitrogen lone pair by $\sim 12^{\circ}$.
(28) Weinhold, F.; Landis, C. R. Valency and Bonding: a natural bond orbital donor-acceptor perspective; Cambridge University Press: New York, 2005.
(29) Akiba, K., Ed. Chemistry of Hypervalent Compounds; Wiley-VCH: New York, 1999.
(30) In this regard, it is worth noting that the $\mathrm{Zn}-\mathrm{X}$ bond lengths are longer than those in pseudo-tetrahedral $\left[\mathrm{Tp}^{t \mathrm{Bu}}\right] \mathrm{ZnX}$ derivatives. See: Yoon, K.; Parkin, G. J. Am. Chem. Soc. 1991, 113, 8414.
(31) In the extreme that there is no $\mathrm{Zn} \cdots \mathrm{C}$ interaction, the bonding at the four-coordinate Zn center may be simply expressed in terms of four $2 \mathrm{c}-2 \mathrm{e}$ bonds.
(32) Interestingly, geometry-optimized structures with $\mathrm{Zn}-\mathrm{C}$ distances of less than $2.4 \AA$ possess C_{3} rather than $C_{3 v}$ symmetry due to the introduction of a propeller-like twist of the imidazole groups in order to maintain reasonable bond angles.

